Flow of multiparticle collision dynamics fluids confined by physical barriers989
Barra lateral del artículo
Contenido principal del artículo
Resumen
We propose a new method for confining of fluids simulated by Multiparticle Collision Dynamics. In this method confinement is achieved by introducing solid surfaces consisting of particles that interact with the particles of the fluid by means of explicit repulsive forces. We derive an integrated expression for the interaction potential between the fluid and the solid wall in which the molecular properties of the latter are averaged and reduced to an equation that involves only its geometrical features. We test the applicability of the proposed model in simulations of fluids confined between two parallel planes and subjected to a uniform force field. We find that our model yields the correct plane Poiseuille flow expected from hydrodynamics with slip boundary conditions. We carry out an extensive numerical analysis of the method for a wide range of values of the simulation parameters. We measure important quantities characterizing the flow and the fluid-solid interaction, e.g., the slip at the solid boundary and the effective viscosity of the fluid. Finally, we determine the conditions for which flows with stick boundary condition can be simulated.
Descargas
Detalles del artículo
El autor puede disponer de su artículo para su archivo en repositorios institucionales o en páginas web personales, con la referencia y agradecimientos a la fuente donde se ha publicado.
Citas
Allahyarov, E. and Gompper, G. (2002). Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows.Phys. Rev. E, 66:036702.
Ayala-Hernández , A. and Híjar H. (2015). Simulation of Cylindrical Poiseuille Flow in Multiparticle Collision Dynamics using explicit Fluid-Wall confining forces. Rev. Mex. Fis., submitted.
Belushkin, M., Winkler,R. G. and Foffi, G. (2011). Backtracking of colloids: A multiparticle collision dynamics simulation study. J. Phys. Chem. B, 115:14263.
Fernández , J. and Híjar, H. (2015). Mesoscopic simulation of Brownian particles confined in harmonic traps and sheared fluids. Rev. Mex. Fis., 61:1.
Frenkel, D. and Smith, B. (2002) Understanding Molecular Simulations: from Algorithms to Applications. Academic Press, San Diego.
Gompper, G., Ihle, T. , Kroll, D. M., and Winkler,R. G. (2009). Multi-Particle Collision Dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Polym. Sci., 221:1–87.
Griebel, M., Knapek, S., and Zumbusch, G. (2007). Numerical Simulation in Molecular Dynamics. Numerics, Algorithms, Parallelization, Applications. Springer, Berlin Heidelberg.
Hansen, J. P. and McDonald, I. R. (1986). Theory of simple liquids, 2nd ed.Academic Press, London.
Hecht, M., Harting , J., Ihle, T., and Hermann, H. J. (2005). Simulation of claylike colloids. Phys. Rev. E, 72:011408.
Híjar, H. and Sutmann, G. (2011). Hydrodynamic fluctuations in thermostatted multiparticle collision dynamics. Phys. Rev. E, 83:046708.
Híjar, H. (2013). Tracking control of colloidal particles through non-homogeneous stationary flows. J. Chem. Phys., 139:234903.
Híjar, H. (2015). Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions. Phys. Rev. E, 91:022139.
Ihle, T. and Kroll, D. M. (2001). Stochastic rotation dynamics:a Galilean-invariant mesoscopic model for fluid flow. Phys. Rev. E, 63:020201.
Ihle, T. and Kroll, D. M. (2003). Stochastic Rotation Dynamics II. transport coefficients, numerics, and long-time tails. Phys. Rev. E, 67:066706.
Inoue, Y., Chen, Y., and Ohashi, H. (2002). Development of a simulation model for solid objects suspended in a fluctuating fluid. J. Stat. Phys., 107:85.
Moncho Jordá A., Louis, A. A., and Padding, J. T. (2010). Effects of interparticle attractions on colloidal sedimentation. Phys. Rev. Lett., 104:068301.
Moncho Jordá, A., Louis, A. A., and Padding, J. T. (2012). How Peclet number affects microstructure and transient cluster aggregation in sedimenting colloidal suspensions. J. Chem. Phys., 136:064517.
Kapral, R. (2008). Multiparticle Collision Dynamics: Simulation of complex systems on mesoscales. Adv. Chem. Phys., 140:89.
Kikuchi, N., Gent, A., and Yeomans, J. M. (2002). Polymer collapse in the presence of hydrodynamic interactions. Eur. Phys. J. E, 9:63.
Kikuchi, N., Ryder, J. F., Pooley, C. M., and Yeomans, J. M. (2005). Kinetics of the polymer collapse transition: The role of hydrodynamics. Phys. Rev. E, 71:061804.
Lamura, A., Gompper, G., Ihle, T., and Kroll, D. M. (2001). Multi-particle collision dynamics: Flow around a circular and a square cylinder. Europhys. Lett., 56:319.
Lamura, A. and Gompper, G. (2002). Numerical study of the flow around a cylinder using multi-particle collision dynamics. Eur. Phys. J. E, 9:477.
Lamura, A. and Gompper, G. (2008). Tunable-slip boundaries for coarse-grained simulations of fluid flow. Eur. Phys. J. E, 26:115.
Landau, L. D. and Lifshitz, E. M. (1959). Fluid Mechanics, 2nd revised English version. Pergamon, London.
Lee, S. H. and Kapral, R. (2004). Friction and diffusion of a Brownian particle in a mesoscopic solvent.J. Chem. Phys., 121:11163.
Malevanets, A. and Kapral, R. (1999). Mesoscopic model for solvent dynamics. J. Chem. Phys., 110:8605.
Malevanets, A. and Kapral, R. (2000). Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys., 112:7260.
Malevanets, A. and Yeomans, J. M. (1999). Dynamics of short polymer chains in solution. Europhys. Lett., 52:231.
Noguchi, H. and Gompper, G. (2005). Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations. Phys. Rev. E, 72:011901.
Padding, J. T. and Louis, A. A. (2004). Hydrodynamic and Brownian fluctuations in sedimenting suspensions. Phys. Rev. Lett., 93:220601.
Padding, J. T. and Louis, A. A. (2006). Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Phys. Rev. E, 74:031402.
Pivkin, I. V. and Karniadakis, G. E. (2005). A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comp. Phys., 207:114.
Pooley, C. M. and Yeomans, J. M. (2005). Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics. J. Phys. Chem. B, 109:6505, 2005.
Ripoll, M., Mussawisade, K., and Winkler, R. G. (2004). Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhys. Lett., 68:106.
Spijker, P., Eikelder, H. M. M., Markvoort, A. J., Nedea, S. V., and Hilbers, P. A. J. (2008). Implicit Particle Wall Boundary Condition in Molecular Dynamics. Engineering Science, 222:855–864, No.5.
Tüzel E., Strauss, M., Ihle, T., and Kroll, D. M. (2003). Transport coefficients for stochastic rotationdynamics in three dimensions. Phys. Rev. E, 68:036701.
Winkler, R. G. and Huang, C. C. (2009). Stress tensors of multiparticle collision dynamics fluids. J. Chem. Phys., 130:074907.
Withmer, J . K. and Luijten, E. (2010). Fluid-solid boundary conditions for multiparticle collision dynamics. J. Phys.: Condens. Matter, 22:104106.
Yeomans, J. M. (2006). Mesoscale simulations: Lattice Boltzmann and particle algorithms. Physica A, 369:159.