Modelos matemáticos de las cinéticas de producción de metano por co-digestión anaérobia de biomasas residuales.18

Barra lateral del artículo

Publicado: ene 16, 2025
Palabras clave:
Biodigestion; AcoD; BMP; sigmoidal; biogas; modelling.

Contenido principal del artículo

Héctor Alfredo López-Aguilar
Enrique Alberto Huerta-Reynoso
Jorge Alberto Gómez
Antonino Pérez-Hernández
https://orcid.org/0000-0002-9486-7072

Resumen

La disposición inadecuada de los residuos orgánicos agroalimentarios ha ocasionado graves impactos medioambientales, por lo que es necesario el desarrollo de procesos y herramientas que permitan generar productos de valor a partir de estos residuos y propiciar su aprovechamiento. Esta investigación presenta el estudio y modelación matemática de la cinética de la producción de metano, de la co-digestion anaerobia de biomasas residuales como son la excreta de vaca y de caballo, tripa y suero lácteo. Con base en el método de potencial bioquímico de metano se realizaron experimentos de co-digestion anaerobia utilizando reactores herméticos a temperatura ambiente monitoreados por 70 días consecutivos. Se utilizaron los modelos: a) cinético de primer orden, b) de cono, c) logístico modificado, d) Gompertz modificado y e) Richards modificado para describir la cinética de la producción experimental de metano. Se determinó la tasa máxima de producción de metano y la duración de la fase lag, además del potencial de producción de metano acumulado. Se comparó la suma de cuadrados residual y el coeficiente de correlación para identificar el modelo matemático que mejor describe el fenómeno. Modelar la cinética de AD de manera adecuada es importante para diseñar digestores y predecir el comportamiento de sistemas anaeróbicos, así como para optimizar y escalar fermentadores reales. Se demostró que existe potencial para la producción de biogás, a partir de la co-digestion anaerobia de los residuos experimentados.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
López-Aguilar, H. A., Huerta-Reynoso, E. A., Gómez, J. A., & Pérez-Hernández, A. (2025). Modelos matemáticos de las cinéticas de producción de metano por co-digestión anaérobia de biomasas residuales. Revista Del Centro De Investigación De La Universidad La Salle. Recuperado a partir de https://revistasinvestigacion.lasalle.mx/index.php/recein/article/view/3650
Sección
Artículos

Citas

Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource technology. 101(16), 6368-6373. https://doi.org/10.1016/j.biortech.2010.03.071
Achinas, S., & Euverink, G. J. W. (2019). Effect of combined inoculation on biogas production from hardly degradable material. Energies, 12(2), 217. https://doi.org/10.3390/en12020217
Achmon, Y., Claypool, J. T., Pace, S., Simmons, B. A., Singer, S. W., & Simmons, C. W. (2019). Assessment of biogas production and microbial ecology in a high solid anaerobic digestion of major California food processing residues. Bioresource Technology Reports, 5, 1-11. https://doi.org/10.1016/j.biteb.2018.11.007
Aghdam, E. F., Scheutz, C., & Kjeldsen, P. (2017). Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals. Waste Management. 63, 226-237. https://doi.org/10.1016/j.wasman.2016.11.023
Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. DOI: 10.1109/TAC.1974.1100705
Almomani, F., & Bhosale, R. (2020). Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere. 126805. https://doi.org/10.1016/j.chemosphere.2020.126805
Altaş, L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of hazardous materials. 162(2-3), 1551-1556. https://doi.org/10.1016/j.jhazmat.2008.06.048
APHA, A. (1999). WEF-Method 2540 E—Fixed and volatile Solids lgnited at 550 C. Standard Methods for the examination of water and wastewater Washington.
Castrillón, L., Fernández-Nava, Y., Ormaechea, P., & Marañón, E. (2011). Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresource technology. 102(17), 7845-7849. https://doi.org/10.1016/j.biortech.2011.05.047
Elagroudy, S., Radwan, A. G., Banadda, N., Mostafa, N. G., Owusu, P. A., & Janajreh, I. (2020). Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge. Renewable Energy. 155, 1009-1020. https://doi.org/10.1016/j.renene.2020.03.166
Imeni, S. M., Pelaz, L., Corchado-Lopo, C., Busquets, A. M., Ponsá, S., & Colón, J. (2019). Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms. Bioresource technology. 291, 121872. https://doi.org/10.1016/j.biortech.2019.121872
Kasinath, A., Fudala-Ksiazek, S., Szopinska, M., Bylinski, H., Artichowicz, W., Remiszewska-Skwarek, A., & Luczkiewicz, A. (2021). Biomass in biogas production: Pretreatment and codigestion. Renewable and Sustainable Energy Reviews, 150, 111509. https://doi.org/10.1016/j.rser.2021.111509
Kehoe, S. I., Jayarao, B. M., & Heinrichs, A. J. (2007). A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. Journal of dairy science, 90(9), 4108-4116. https://doi.org/10.3168/jds.2007-0040
Kong, X., Xu, S., Liu, J., Li, H., Zhao, K., & He, L. (2016). Enhancing anaerobic digestion of high-pressure extruded food waste by inoculum optimization. Journal of environmental management. 166, 31-37. https://doi.org/10.1016/j.jenvman.2015.10.002
Li, L., Kong, X., Yang, F., Li, D., Yuan, Z., & Sun, Y. (2012). Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Applied biochemistry and biotechnology. 166(5), 1183-1191. https://doi.org/10.1007/s12010-011-9503-9
Li, W., Khalid, H., Amin, F. R., Zhang, H., Dai, Z., Chen, C., & Liu, G. (2020). Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion. Renewable Energy. 157, 1081-1088. https://doi.org/10.1016/j.renene.2020.04.035
Moset, V., Al-zohairi, N., & Møller, H. B. (2015). The impact of inoculum source, inoculum to substrate ratio and sample preservation on methane potential from different substrates. Biomass and Bioenergy. 83, 474-482. https://doi.org/10.1016/j.biombioe.2015.10.018
Muthu, D., Venkatasubramanian, C., Ramakrishnan, K., & Sasidhar, J. (2017). Production of biogas from wastes blended with cowdung for electricity generation-a case study. In IOP Conf. Series, Earth Environ. Sci. 80(1). 012055. https://doi.org/10.1088/1755-1315/80/1/012055
Náthia-Neves, G., Berni, M., Dragone, G., Mussatto, S. I., & Forster-Carneiro, T. (2018). Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology. 15(9), 2033-2046. https://doi.org/10.1007/s13762-018-1682-2
Navarro, S. L. B., Lanuza, D. S. Z., Ramírez, J. C. A., & Calero, J. A. Z. (2014). Evaluación de la producción de biogás a partir de suero lácteo a escala de laboratorio. Revista Ciencia y Tecnología El Higo. 4(1), 29-35. https://doi.org/10.5377/elhigo.v4i1.8633
Nguyen, D. D., Jeon, B. H., Jeung, J. H., Rene, E. R., Banu, J. R., Ravindran, B., ... & Chang, S. W. (2019). Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresource technology. 280, 269-276. https://doi.org/10.1016/j.biortech.2019.02.033
Nindhia, T. G. T., Surata, I. W., Nindhia, T. S., Negara, D. N. K. P., & Diantoro, M. (2017). Waste of Copper Alloy Chips as Biogas Desulfurizer. International Journal of Environmental Science and Development, 8(1), 15–18. https://doi.org/10.18178/ijesd.2017.8.1.913
Olawoye, B., & Gbadamosi, S. (2020). Digestion kinetics of native and modified cardaba banana starch: A biphasic approach. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.03.089
Pečar, D., & Goršek, A. (2020). Kinetics of methane production during anaerobic digestion of chicken manure with sawdust and miscanthus. Biomass and Bioenergy. 143, 105820. https://doi.org/10.1016/j.biombioe.2020.105820
Pererva, Y., Miller, C. D., & Sims, R. C. (2020). Existing Empirical Kinetic Models in Biochemical Methane Potential (BMP) Testing, Their Selection and Numerical Solution. Water. 12(6), 1831. https://doi.org/10.3390/w12061831
Song, Y., Mahdy, A., Hou, Z., Lin, M., Stinner, W., Qiao, W., & Dong, R. (2020). Air Supplement as a Stimulation Approach for the in Situ Desulfurization and Methanization Enhancement of Anaerobic Digestion of Chicken Manure. Energy and Fuels, 34(10), 12606–12615. https://doi.org/10.1021/acs.energyfuels.0c01724
Tian, Y., Yang, K., Zheng, L. (2020) Modelling Biogas Production Kinetics of Various Heavy Metals Exposed Anaerobic Fermentation Process Using Sigmoidal Growth Functions. Waste Biomass Valor. 11, 4837–4848. https://doi.org/10.1007/s12649-019-00810-x
Ware, A., & Power, N. (2017). Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renewable Energy. 104, 50-59. https://doi.org/10.1016/j.renene.2016.11.045
Whiting, A., & Azapagic, A. (2014). Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy, 70, 181-193.
Yan, M., Fotidis, I. A., Tian, H., Khoshnevisan, B., Treu, L., Tsapekos, P., & Angelidaki, I. (2019). Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: focusing on microbial community dynamics. Bioresource technology, 286, 121376. https://doi.org/10.1016/j.biortech.2019.121376
Zhao, T., Chen, Y., Yu, Q., Shi, D., Chai, H., Li, L.,& He, Q. (2019). Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite. PloS one. 14(7), e0218856. https://doi.org/10.1371/journal.pone.0218856
Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van't Riet, K. J. A. E. M. (1990). Modeling of the bacterial growth curve. Applied and environmental microbiology. 56(6), 1875-1881.